Welcome to download

Do not remember me!

We have Tested and found Below Host Trustable, Please Buy Premium account From Below Host.
UploadGIG.com nitroflare.com
Note: Do not Buy Premium account from Reseller

Latest Comments

» » » Hands-On Recommendation Systems with Python_LOL

Hands-On Recommendation Systems with Python_LOL

Hands-On Recommendation Systems with Python_LOL
English | 31 July 2018 | ISBN: 1788993756 | 146 Pages | EPUB | 2.87 MB

With Hands-On Recommendation Systems with Python, learn the tools and techniques required in building various kinds of powerful recommendation systems (collaborative, knowledge and content based) and deploying them to the web

Key Features
Build industry-standard recommender systems
Only familiarity with Python is required
No need to wade through complicated machine learning theory to use this book
Book Description
Recommendation systems are at the heart of almost every internet business today; from Facebook to Net?ix to Amazon. Providing good recommendations, whether it's friends, movies, or groceries, goes a long way in defining user experience and enticing your customers to use your platform.

This book shows you how to do just that. You will learn about the different kinds of recommenders used in the industry and see how to build them from scratch using Python. No need to wade through tons of machine learning theory”you'll get started with building and learning about recommenders as quickly as possible..

In this book, you will build an IMDB Top 250 clone, a content-based engine that works on movie metadata. You'll use collaborative filters to make use of customer behavior data, and a Hybrid Recommender that incorporates content based and collaborative filtering techniques

With this book, all you need to get started with building recommendation systems is a familiarity with Python, and by the time you're fnished, you will have a great grasp of how recommenders work and be in a strong position to apply the techniques that you will learn to your own problem domains.

What you will learn
Get to grips with the different kinds of recommender systems
Master data-wrangling techniques using the pandas library
Building an IMDB Top 250 Clone
Build a content based engine to recommend movies based on movie metadata
Employ data-mining techniques used in building recommenders
Build industry-standard collaborative filters using powerful algorithms
Building Hybrid Recommenders that incorporate content based and collaborative fltering
Who this book is for
If you are a Python developer and want to develop applications for social networking, news personalization or smart advertising, this is the book for you. Basic knowledge of machine learning techniques will be helpful, but not mandatory.

Table of Contents
Getting Started with Recommender Systems
Manipulating Data with the Pandas Library
Building an IMDB Top 250 Clone with Pandas
Building Content-Based Recommenders
Getting Started with Data Mining Techniques
Building Collaborative Filters
Hybrid Recommenders

Download link:

Links are Interchangeable - Single Extraction - Premium is support resumable

Please login or register

Dear visitor, you are browsing our website as Guest. We strongly recommend you to register and login to view hidden contents.

Comments (0)

Leave Comment

Security Code: *
Click on the image to refresh the code if it cannot be viewed